PUBLICATIONS

 

 

CELL

A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction.

Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, and Datta SR (2016) A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell, 165: 1734-48.

Preview: Dey S and Stowers L (2016) Think you know how smell works? Sniff again. Cell, 165: 1566-7.

 

 
 

DEVELOPMENTAL NEUROBIOLOGY

Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

Persson L, Witt RM, Galligan M, Greer PL, Eisner A, Pazyra-Murphy MF, Datta SR, and Segal RA (2014) Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry. Dev Neurobiol, 74:1255-67.

 

 
 

Two Faces of Evil: Cancer and Neurodegeneration

The E3 ubiquitin ligase Ube3A regulates synaptic function through the ubiquitination of Arc.

Griffith EC, Greer PL, and Greenberg ME (2011). The E3 ubiquitin ligase Ube3A regulates synaptic function through the ubiquitination of Arc. Two Faces of Evil: Cancer and Neurodegeneration, 1st Edition, Curran T and Christen Y (Eds.) 41-56.

 

 
 

CELL

EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation.

Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, and Greenberg ME (2010) EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation.  Cell, 143: 442-55.

News and Views: Scheiffele P and Beg AA (2010) Neuroscience: Angelman Syndrome connections. Nature, 468: 907-8.

 

 
 

CELL

The Angelman syndrome-protein Ube3A regulates synapse development by ubiquitinating Arc.

Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh,HL, Chowdury S, Worley P, Steen J, and Greenberg ME(2010) The Angelman syndrome-protein Ube3A regulates synapse development by ubiquitinating Arc. Cell, 140: 704-716.

Preview: Tai HC and Schuman EM (2010) Angelman syndrome: finding the lost arc. Cell, 140: 608-10.

Research Highlight: Bodo C (2010) Mechanistic insights into Angelman’s syndrome. Nat Rev Neurosci 11: 298.

News and Views: Scheiffele P and Beg AA (2010) Neuroscience: Angelman Syndrome connections. Nature, 468: 907-8.

Top7 of F1000: Article rated “exceptional” (2010) by DiAntonio A F1000Prime DOI: 10.3410/f.2456970.2360057, Scheiffele P F1000Prime DOI: 10.3410/f.2456970.2976055, Kiebler M and Doyle M F1000Prime DOI: 10.3410/f.2456970.2309055, and Giese K F1000Prime DOI: 10.3410/f.2456970.2093071.

 

 
 

THE AmERICAN JOURNAL of Psychiatry 

Activity-dependent transcription and disorders of human cognition.

Greer PL, Zieg J, and Greenberg ME (2009).  Activity-dependent transcription and disorders of human cognition. Am J Psychiatry, 166:14-5.

 

 
 

NEURON

From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function.

Greer PL and Greenberg ME (2008). From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron, 59:846-60.

 

 
 

CELL

SnapShot:Ca(2+)-dependent transcription in neurons.

Zieg J, Greer PL and Greenberg ME (2008). SnapShot:Ca(2+)-dependent transcription in neurons. Cell, 134:1080.

 

 
 

SCIENCE

Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number.

Flavell SW, Cowan CW, Kim TK, Greer PL, Lin Y, Paradis S, Griffith EC, Hu L, Chen C, and Greenberg ME (2006).  Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science, 311:1008-1012.

Perspective: Beg, AA, Scheiffele P (2006) SUMO wrestles the synapse. Science, 311: 962-3.

 

 
 

NEURON

Regulation of EphA4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function.

Egea J, Nissen UV, Dufour A, Sahin M, Greer P, Kullander K, Mrsic-Flogel TD, Greenberg ME, Kiehn O, Vanderhaeghen P, and Klein R (2005).  Regulation of EphA4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron, 46: 205-17.

 

 
 

NEURON

Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse.

Sahin M*, Greer PL*, Lin MZ*, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O’Connell S, Cowan CW, Hu L, Goldberg JL, Debant A, Corfas G, Krull CE, and Greenberg ME (2005).  Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron, 46:191-204.

Preview: Murai KK and Pasquale EB (2005) New exhanges in Eph-dependent growth cone dynamics. Neuron, 46: 161-3.

 

 
 

NEURON

Vav family GEFs link activated Ephs to endocytosis and axon guidance.

Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, and Greenberg ME (2005).  Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron, 46:205-17.

Preview: Murai KK and Pasquale EB (2005) New exhanges in Eph-dependent growth cone dynamics. Neuron, 46: 161-3.

 

 
 

SCIENCE

Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.

Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, and Greenberg ME (2005).  Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303:2011-5.

 

 
 

JOURNAL OF NEUROSCIENCE

The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha subunit of Ca2+/calmodulin dependent protein kinase II and alpha-actinin-1 in a calcium dependent manner.

Dhavan R*, Greer PL*, Morabito MA, Orlando LR, and Tsai LH (2002).  The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha subunit of Ca2+/calmodulin dependent protein kinase II and alpha-actinin-1 in a calcium dependent manner. J Neurosci, 22: 7879-91.

 

 
 

CELL GROWTH & DIFFERENTIATION

Cdk5 on the brain.

Smith DS, Greer PL, and Tsai LH. (2001). Cdk5 on the brain. Cell Growth Differ, 12:277-83.